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Abstract-This paper is concerned with the steady-state behaviour of two-phase natural circulation loops, 
i.e. thermosyphon loops, in which the density difference of a fluid between its liquid and vapour phases is 
the driving force. The one-dimensional governing equations are first formulated for a variable-area, two- 
phase loop based on the homogeneous model. In addition, the quality of the vapour in the two-phase zone 
is assumed to be a linearly varying function of the flow distance. The model is then applied to constant- 
area square and toroidal loops with water-steam as the working fluid. For a given size and shape of the 
loop, the effect of relative position between the evaporator and condenser can be evaluated in terms of the 
water-level difference between them. Results show that loop mass flow rate and recovered heat increase 
with increasing water-level difference under a fixed two-phase zone length due to the increase of the buoyant 
force, while they decrease with increasing two-phase zone length under a fixed water-level difference due 
to the increase of the two-phase frictional force. For a given loop diameter or loop length, the mass flow 
rate and the recovered heat decrease with decreasing flow cross-sectional area under fixed water-level 
difference and two-phase zone length primarily due to the decrease of inertial force around the loop. For 
the purpose of waste heat recovery, a fluid with larger latent heat of evaporation is desirable since it is able 

to recover more heat for a given mass flow rate. 

1. INTRODUCTION 

THIS PAPER is concerned with the steady-state behav- 
iour of a two-phase natural circulation loop, i.e. ther- 
mosyphon loop, in which the density difference of a 
fluid between its liquid and vapour phases is the driv- 
ing force. There are a number of engineering appli- 
cations for a two-phase natural circulation loop. 
Examples are thermosyphon reboilers [l-3], emerg- 
ency cooling of nuclear reactor cores during an acci- 
dent [4, 51 and reflux boiling in a light water reactor 
core [6]. Of equal importance in engineering appli- 
cations is the single phase natural circulation loops, 
such as the cooling loop in a pressurized water reactor 
core, solar water heaters, and cooling of turbine 
blades and electronic components ; see refs. [7-91. 

Demands on energy conservation also put it into 
use for waste heat recovery. A recently com- 
mercialized unit for such a purpose is a two-phase 
rectangular loop shown in Fig. 1 ; see ref. [lo]. There, 
a high-temperature flue gas is forced to pass through 
the evaporator section located at one vertical branch, 
while the preheated air is forced to pass through the 
condenser section located on another vertical branch 
of the loop, within which water-steam is circulating. 
For proper circulation in such a system, the evap- 
orator section should be placed below the condenser. 
The vertical distance between the evaporator and con- 
denser sections, their lengths and flow cross-sectional 

t To whom all correspondence should be addressed. 

area are the main parameters that affect the loop 
performance. 

Ramos et al. [l I] carried out a one-dimensional 

steady-state analysis for two-phase loops and dis- 
cussed the effect of water-level difference, i.e. the ver- 
tical distance between evaporator and condenser, on 
the loop mass flow rate. The analysis, however, is 
based on the ‘sharp-interface’ approximation in which 
two-phase zone lengths in the evaporator and con- 
denser sections are neglected. In so doing, effects of 
two-phase zone lengths and more insight phenomena 
affecting the loop performance cannot be examined. 

It is the purpose of this paper to provide a detailed 
steady-state, one-dimensional, analysis of natural cir- 
culation loops. The governing equations are first for- 
mulated for a variable-area, two-phase loop based on 
the homogeneous model. In addition, the quality of 
the vapour in the two-phase zone is assumed to be a 
linearly varying function of the flow distance. The 
model is then applied to constant-area square and 
toroidal loops with water-steam as the working fluid. 
Effects of water-level difference, two-phase zone 
lengths, and flow cross-sectional area on the loop 
mass flow rate and recovered heat are examined and 
discussed. 

2. MATHEMATICAL FORMULATION FOR 

VARIABLE-AREA LOOP 

The closed loop has an arbitrary shape with a pre- 
scribed cross-sectional area A(s), where s is the co- 
ordinate measured from the origin in the counter- 
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NOMENCLATURE 

flow cross-sectional area 
proportional factor for the frictional 
force in a single phase zone 
diameter of flow cross-sectional area 
two-phase friction coefficient 
gravitational acceleration 
latent heat of vaporization 
total length of the loop 
length of two-phase zone when ih = 1, = E 
length of cooling (condenser) section 
length of heating (evaporator) section 
mass flow rate 
perimeter of flow cross-section 
local pressure 
total heat input (or output) 
heat output per unit length 
heat input per unit length 
radius of toroidal loop (Fig. 4) 
coordinate or Row distance 

mean velocity 
quality of vapour in two-phase zone 

z vertical height relative to a datum plane 
(Fig. 1). 

Greek symbols 
A difference 

0 angle of flow direction from the 
horizontal for a square loop (Fig. 3) ; 
or angle measured from the lowest point 

in a toroidal loop (Fig. 4) 

fi dynamic viscosity 
V specific volume 

% difference in specific volume between 
saturated vapour and its liquid 

P density 

L frictional force on the wall. 

Subscripts 
C cooling section in the loop 

: 

vapour or gas 
heating section in the loop 

1 liquid. 

FIG. 1. Schematic of a two-phase natural circulation loop for waste heat recovery. 

clockwise direction (Fig. 2). The section 0 < s < d, is 
adiabatic and contains saturated liquid. The loop is 

heated continuously by a constant heat flux & in the 
evaporator region d, < s < d2. Section d2 < s < d, is 
also adiabatic and contains saturated vapor. To com- 
plete the cycle, condenser section d, < s g L is cooled 
by a constant heat flux & where L is the loop length. 

Assumptions made in the analysis are : 

(1) flow velocity and pressure are steady-state, and 
one-dimensional functions of the flow distance ; 

(2) fluid in the entire loop is in the saturated con- 

dition ; 
(3) the Poiseuille flow profile is used to evaluate the 

friction factor in single phase regions ; 

(4) the homogeneous model is employed for the 
two-phase zones ; 

(5) the quality of the vapour in the two-phase zone 
varies linearly from one section boundary to the 
other ; and 

(6) the friction coefficient in the two-phase zone is 
constant. 

Besides, superheat, subcoolin~ and possible 
entrainment in the two-phase zones are not con- 
sidered. 

Note that vapour quality usually increases (or 
decreases) monotonically from the inlet section of the 
evaporator (or condenser) to the exit section. The 
assumption of a linear dist~bution of vapour quality 
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FIG. 2. Schematic and coordinates of a variable-area two-phase natural circulation loop. 

in the two-phase segments is therefore frequently 
employed in the two-phase modelling [13]. It is also 
noted in ref. 1131 that the value of fTp for low-pressure 
flashing steam-water flow is in the range of 0.0029- 
0.0033, and is about 0.005 for a high-pressure boiler. 
In either case, & is nearly constant. In this study, 
a value of & = 0.0031 is chosen for the analytical 
development. 

Since the homogeneous model is employed in the 
two-phase zone, the governing equations in the two- 
phase zone bear the same forms as those in the single 
phase region [ 12, 131. So the one-dimensional, steady- 
state equations governing the loop flow can be written 

as 

[ ni = puA (1) 

dp z,P ti du 

A 
Ads -pgsin6 (2) 

(3) 

Equations (l)-(3) are the continuity, momentum and 
energy equations, respectively. In equation (2), the 
pressure drop is due to the viscous, inertia and gravi- 
tational losses. In the above equations p and TV are 
the mean density and wall friction determined by 

1 

ph in the saturated liquid region 

p = pp, in the saturated vapour region 

v- ’ = [v,+xv,.J ‘, in the two-phase zone 

(4a-c) 

Bp,, in the liquid region 

z, = 
Bgug, in the vapour region 

(5a-c) 

P44 fTpT, in the two-phase region 

where B is a constant; x and Jrp are the quality of 
vapour and the friction coefficient in the two-phase 
zone, respectively. For a Poiseuille flow in the single 
phase region, one can find [ 141 

B _ 8nlr’ 
I 

B =!!?!! 
P' g P 

where P is the perimeter of the cross-section. 
The loop integral of equation (2) requires 

(7) 

Substituting equations (4)-(6) into equation (2) and 

carrying out the loop integral yields 

where 

a,ti2+ati~ti~+bti+c = 0 

a = 2n 
d2 fTP 

s 
----Ids+2n: 

d, PPA s 
+ds 

d, PPA 

*l$ds+c; 2 ds 

s 

L 
c= pg sin 0 ds. 

0 

(8) 

(94 

C’b) 

(9c) 

(9d) 

In equation (9d), 0 is the angle of flow measured from 
the horizontal, and the following relation holds : 

dz = sinBds (10) 

where z is the vertical height from the datum plane 
(Fig. 2). 
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FIG. 3. Physical model and coordinates for a constant-area square ioop. 

It can be seen from equation (9a) that ‘C-J ,’ represents 
the variation of cross-sectional area ; ‘a’ in equation 
(9b) represents two-phase friction forces in the heating 
and cooling sections ; “b’ in equation (Se) represents 
the single phase friction forces in the saturated liquid 
and vapour zones ; and ‘c’ in equation (9d) is simply 
the net driving force, or net buoyant force, around 
the loop due to the density difference between the 
liquid and vapour phases. 

If the loop is of variable area such that ‘a,’ in 
equation (8) is not equal to zero, multiple solutions 
are obtained. However, for a loop of constant area as 
considered in the following sections, a, = 0 and there 
is only one solution given by 

-hSJ(bz-4ac) tir = -.._ 
2a (11) 

provided that 

h2-4ac > 0. (12) 

Note that in the present study, the evaporator is 
located on the right leg of the loop. so only the positive 
value of P% needs to be considered. It can be shown 
later that the value of ‘c’ is related to the liquid-level 
difference between the evaporator and condenser sec- 
tions. If the evaporator is placed below the condenser 
as usually done in the system of waste heat recovery, 
‘c’ is always negative. Because values of ‘a’ and ‘b’ 
shown in equations (9b) and (SC) are always positive, 
so equation (12) can always be satisfied. 

It is clear from equations (9a) to (9d) that the 
functional relation n(s), p(s), fTP, B, and B, must be 
known in order to evaluate a, b and c. That is, the 
loop shape, dimensions and fluid properties must be 
known in advance. In what follows, analysis will be 
focused on constant-area, square and toroidal loops 
as shown in Figs. 3 and 4, respectively. 

3. CONSTANT-AREA SQUARE LOOP 

The physical model and coordinate system for a 
square loop is shown in Fig. 3. The central line of the 

lower horizontal branch is taken to be the datum 
plane. From equation (4~) p(s) is prescribed if x(s), 
the vapour quality as a function of flow distance, is 
known. In this study, a linearly varying function is 
assumed for x(s) according to 

O<s,<d,: x=0 

d, < s G d2: x = (s-d,)//,, 

d2 < s 6 d, : 
(13a-d) 

x = 1 

d3 < s 6 L: x = (L--s)/l,. 

That is vapour quality is linearly increasing in the 
evaporator section, and is linearly decreasing in the 
condenser section. Substituting equations (6a), (6b), 
(13a) and (13b) into equations (9a)-(9d) and using 
relation (10) gives 

In the above 

I, = 23-z& lh = zz-z, (17a,b) 

AZ, = z”-z,, Azp = z3 -z2 (18a,b) 

where 1, and 1, are the heating (evaporator) and 
cooling (condenser) lengths, respectively; AZ, the 
liquid-level difference, and AZ, the vapour-level 
difference. Note that in arriving at equation (14) we 
have used the assumption that f& is nearly constant 
in the two-phase zone, and fTP = 0.0031 is chosen in 
the numerical calculations. 

Because liquid density is usually much larger than 
vapour density (pf z 1500pp for water as an example), 
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FIG. 4. Physical model and coordinates for a constant-area toroidal loop. 

the value of ‘c’ shown in equation (16) is always nega- 
tive if the evaporator is placed below the condenser 
(AZ, > 0), unless the condenser length Z, is imprac- 
tically extremely long. Therefore, the net driving force 
‘c’ is dominated by the liquid-level difference. If the 
evaporator and condenser are equal in length I, then 
equation (16) can be simplified as 

c 2 -prgAz,. (19) 

That is, the net driving force ‘c’ is mainly contributed 
by the liquid-level difference AZ,. 

4. CONSTANT-AREA TOROIDAL LOOP 

The physical model for a toroidal loop and its coor- 
dinate system are shown in Fig. 4. For convenience, 
the datum plane is taken to be the horizontal line 
passing through the lowest point of the loop. The 
following relation holds for a toroidal loop : 

dz = Rsinedtl (20) 

where --71 < 0 < a, and 8 is measured counter- 
clockwise from the lowest point in the loop (Fig. 4). 

As in a square loop, the quality of vapour in the 
loop is assumed to be a linearly varying function of 
the flow distance according to 

O<s<d,: x=0 

d, <s < d,: x = (e-8,)/(8,-8,) 

d, < s < d, : x = 1 

d, <s < L: x = (27~+&,-8)/(27r++~-6,). 
(21a-d) 

Substituting equations (6a), (6b), (21a) and (21b) 
into equations (9a)-(9d) and using relation (20) gives 

a = 3 
[ 

lqe*--e,)+ $e2-w 

+vf(2n+e,-e,)+ 32n+e,-8,) (22) 1 
b= T(e,-8,)+y(e1-eJ (23) 

c = g + PP AZ, 

s 2n+eo RsinedtI 
+ . (24) 

a1 v,,(2n+&-0) 

‘f+ (2n+eo-e3) I 

In the above 

Z, = R(27c+Q,-f?,), I,, = R(B,-(3,) (25a,b) 

AZ, = R(cose,-case,), dz, = R(cose,-c0se3). 

(26ab) 

Similarly for a square loop, the value of ‘c’ is always 
negative in a practical system, in which the evaporator 
is placed below the condenser. Note that even if 
I,, = I, = I, the second and the fourth terms on the 
right-hand side of equation (24) cannot be cancelled 
out exactly due to the integral of the sine function. 
However, the sum of these two terms is very small as 
compared with the first term. Consequently equation 
(24) can still be simplified as 

c = -gpfAz, (27) 

if lh = I, = 1. 
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Table 1. Dimensions of square (I) and toroidal (II) loops and 
properties of saturated water at 1 atm 

--_ 
P 18.85 em 

I A 28.26 cm’ 
L 4m 

00 - 80“ 
II R 0.5 m 

D 4.0 cm 

g’r 2.831 x tom4 N s rn-’ 
Y, I.206 x IO-’ N s mm2 
Pf 935.31 kg m-’ 
+a 1.6719 m3 kg-’ 

-__ 

Again, the liquid-level difference is the main driving 
force. 

5. RESULTS AND DISCUSSIONS 

The above analyses for constant-area square and 
toroidal loops will be applied to some particular loop 
dimensions with water-steam as the working fluid. 
The loop dimensions and fluid properties at 1 atm 
are listed in Table 1. In all cases, evaporator and 
condenser are equal in length ; that is 1, = lc = I. 

Figure 5 presents the functional relations of ri? vs 
AZ, for a square loop with I as a parameter. The loop 
length is 4 m and flow cross-sectional area is 28.26 
cm2. Figure 5 shows that ti increases with increasing 
AZ,, for a fixed I. lt can be seen from equation (19) 
that a larger AZ, provides a larger buoyant force and, 
therefore, results in a larger mass flow rate. For a fixed 
AZ,, increasing two-phase zone length results in the 
increase of the two-phase zone frictional force, that 
is, ‘a’ in equation (14) increases ; but the net buoyant 
force ‘c’ in equation (16) remains the same. Also, it 
will be seen later that the value of ‘b’ representing 
frictional forces in single phase regions changes little. 
Consequently, the mass flow rate decreases with 
increasing two-phase zone length under a fixed water- 
level difference. 

Figure 6 presents the functional relation of ti vs 
AQ, (= 8,-Q,) as the parameter for a toroidal loop 
at R = 50 cm, A = 12.57 cm’, P = IS.27 cm, and 
Q0 = - 80”. Note that since AZ, and Aho,, are related to 
Or and /,, according to equations (25b) and (26a), 
respectively, so Fig. 6 in fact shows the dependence of 
rit on -AZ, with I as the parameter. Similarly as in a 
square loop, it shows that the mass flow rate increases 
with decreasing 8, (or increasing AZ,) for a fixed A& 
(or two-phase zone length); and it decreases with 
increasing two-phase zone length under a fixed water- 
level difference. Because mass flow rate is proportional 
to the heat input or output according to equation (3), 
the water-level difference and two-phase zone length, 
therefore, affect the recovered heat in the same 
manner. 

The individual terms in equation (2) are, respec- 
tively, pressure, friction, inertia and buoyancy forces. 
Once the mass flow rate has been determined, their 
functional dependencies on the coordinate s can be 
obtained by integrating them along the flow distance. 
For example, the pressure p(s) can be determined by 

(28) 

where p(O) at s = 0 has to be prescribed. Consider the 
case for a toroidal loop with the following dimen- 
sions : 

8, = 50”, Q,= -go” 

R = 50 cm, A = 12.57 cm” 

6$-Q, = 2ni-Q,-#3 = 30 

and the corresponding profiles of pressure, buoyancy, 
inertia and friction forces as functions of coordinate 
s are shown in Fig. 8. From Fig. 6 it reads 

ti = 0.2213 kg s- ‘. 

3.0~ 

FIG. 5. Mass flow rate as functions of water-level difference and two-phase zone length for a square loop 
with dimensions given in Table I. 
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FIG. 6. Mass flow rate as functions of water-level difference and two-phase zone length for a toroidal loop 
with dimensions given in Table 1. 

All forces have been assigned to zero at the origin. 
Interpretation of the profiles is aided by a diagram 
of the normalized gravity acceleration function, g/g, 
given in the lower part of the figure as a function 
of S. The positive value of g/g corresponds to the 
downcoming section of the loop, while the negative 
value corresponds to the rising section. Coordinates 
for each boundary of the flow regime, such as s = d,, 
d2, . . , are also indicated in the diagram. Therefore, 

the single phase liquid region lies in 0 < s i d, ; the 
evaporator section lies in d, < s < dZ, and so on. 

It can be seen from Fig. 8 that pressure and buoy- 
ancy forces are dominant in the liquid region, where 
friction and inertia forces are negligible. The inertia 
force starts increasing once the flow enters the evap- 
orator section and remains nearly constant in the 

60 

P( Kpo> 

0 

- 60 

1 

937 

single phase vapour zones, and then decreases in the 
condenser section. Pressure and inertia forces are 
dominant in the evaporator and single phase vapour 
zones. The frictional force in the vapour and two- 
phase zones is small, but it is of comparable order to 
the buoyant force. The momentum balance requires 
that the summation of the individual forces vanishes 

at each location of the loop. Also, the loop or cycle 
integrals for the pressure and inertial forces go to zero, 
but are non-zero and opposite in sign and equal in 
magnitude for the buoyant and frictional forces. It is 
this net buoyant force that drives fluid circulating 
around the loop and balances the frictional force. 

If flow cross-sectional area is decreased but other 
loop dimensions are kept the same, the individual 
force contributions are shown in Fig. 9 for a toroidal 

r--------I 
I 

3 \ 

D= 0.04h1 \ 
I \ 

FIG. 7. Mass flow rate as functions of water-level difference and flow cross-sectional area for a toroidal 
loop with dimensions given in Table 1 and AB = 30”. 
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PCKpal 

FIG. 8. Distributions of individual forces around a toroidal loop with A = 12.57 cm2: I, pressure; 
2, friction ; 3, inertia ; 4, buoyancy force. 

loop with A = 3.14 cm2. Comparison with Figs. 8 quality of vapour in the two-phase zone is assumed 

and 9 shows that pressure and inertia forces decrease to be a linearly varying function of the flow distance. 

significantly when the pipe diameter reduces from 4 Effects of two-phase zone lengths, liquid-level differ- 

to 2 cm, but buoyant and frictional forces change ence and flow cross-sectional area on the mass flow 

little. Since mass flow rate is proportional to the inertia rate and recovered heat are examined for constant- 

force, it decreases with decreasing flow cross-sectional area, square, and toroidal loops with water-steam as 

area accordingly. A similar effect also holds for the the working fluid. The conclusions given below can 

recovered heat. be drawn from this study. 

6. CONCLUSIONS 

A one-dimensional steady-state analysis of a vari- 
able-area, two-phase natural convection loop based 
on a homogeneous two-phase model is presented. The 

(1) Mass flow rate or recovered heat increases with 

increasing water-level difference under a fixed two- 
phase zone length due to the increasing net driving 
force. 

(2) Mass flow rate or recovered heat decreases with 

0.3 

m i kglsl 

\ 
-\ 

-- 

\ 

‘-TM 
\ 

\ 
\ 

-.QO3M 
. 

\ 
\ 

\ 
-- -- 0.02M 

-- 
-.__1___ 0DlM 

1 / / I I --_ r-i- 1 
300 400 500 bf? ,700 .75 O 

81 

FIG. 9. Distributions of individual forces around a toroidal loop with A = 3.14 cm’; see Fig. 8 for the 
symbols. 
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increasing two-phase zone length under a fixed water- 

level difference primarily due to the increase of two- 

phase frictional force. 

(3) Mass flow rate or recovered heat decreases with 

decreasing flow cross-sectional area for a fixed loop 
diameter or loop length primarily due to the decrease 
of inertia force. 

(4) Because recovered heat is also proportional to 
the latent heat of evaporation, a fluid with a large 
value of h, is desirable for the purpose of waste heat 
recovery. 
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ANALYSE DUNE BOUCLE DE CIRCULATION PERMANENTE NATURELLE 
DIPHASIQUE 

R&m&On considere des boucles de circulation permanente naturelle, par exemple des thermosiphons, 
pour lesquelles la difference de densite du fluide entre ses phases liquide et vapeur est la cause motrice. Les 
equations unidirectionnelles sont d’abord formulees pour un circuit a section variable, diphasique, a partir 
du modtle homogene. De plus, la qualite de la vapeur dans la zone diphasique est supposie Ctre une 
fonction lineaire de la distance longitudinale. Le modtle est ensuite applique a des boucles a section 
constante, carree et toro’idale, avec l’eau comme fluide actif. Pour une taille don&e, l’effet de la position 
relative entre l’evaporateur et le condenseur peut etre &value en fonction de la difference de niveau d’eau 
liquide entre eux. Les resultats montrent que le debit-masse et la chaleur recupiree augmentent quand cette 
difference de niveau croi’t, pour une longueur de zone diphasique fix&e, a cause de l’accroissement des forces 
de flottement, tandis qu’ils diminuent quant la longueur de zone diphasique augmente, pour une difference 
de niveau d’eau fixee, a cause de l’accroissement de la force de frottement en diphasique. Dans un projet 
de recuperation de chaleur perdue, un fluide a grande chaleur latente de changement d’ttat est souhaitable 

puisqu’il est capable d’accepter plus de chaleur pour un debit-masse don&. 

THEORETISCHE UNTERSUCHUNG DES STATIONAREN VERHALTENS EINES 
ZWEIPHASIGEN NATURUMLAUFSYSTEMS 

Zusammenfassung-Diese Arbeit befaBt sich mit dem stationlren Verhalten von Zweiphasen-Naturumlauf- 
Systemen, z. B. Thermosyphons, in welchen der Dichteunterschied zwischen Fliissigkeit und Dampfphase 
als Antriebskraft dient. Es werden die eindimensionalen Striimungsgleichungen, beruhend auf dem homo- 
genen Modell, fiir einen Zweiphasen-Kreislauf mit verlnderbarem Querschnitt formuliert. Erganzend wird 
angenommen, da5 der Massendampfgehalt im Zweiphasengebiet linear vom Strdmungsweg abhlngt. Das 
Model1 wird dann auf einen quadratischen Kreislauf und einen Torus mit konstantem Querschnitt fiir das 
Arbeitsmittel Wasser-Dampf angewandt. Bei gegebener GrBBe und Form des Kreislaufs kann der EinfluB 
der relativen Lage von Verdampfer und Kondensator mit Hilfe der Wasserspiegeldifferenz zwischen 
ihnen ausgedrtickt werden. Die Ergebnisse zeigen, daD Massenstrom und transportierter Wlrmestrom bei 
wachsender Wasserspiegeldifferenz und unter konstant gehaltener Lange des Zweiphasengebiets infolge 
der zunehmenden Auftriebskriifte gr65er werden; sie werden dagegen bei zunehmender Lange des Zwei- 
phasengebiets und unter konstant gehaltener Wasserspiegeldifferenz infolge des zunehmenden Zweiphasen- 
Stromungswiderstandes kleiner. Bei gegebenem Kreislaufdurchmesser oder Kreislauflange verringem 
sich Massenstrom und Wlrmestrom bei verringertem Striimungsquerschnitt unter konstant gehaltener 

Wasserspiegeldifferenz und Lange des Zweiphasengebiets. 
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AHAJXi3 CTAL(kiOHAPHOl-0 PEXMMA ABYX@A3HOl-0 KOHTYPA C ECTECTBEHHOR 
LJkiPKYJIRl&iE8 

AmoTawm-PaccMaTpuBaeTcsI nawionapnbrl penmu nByx@awbIx ~0tI~yp0~ c e.mecTeemoZi u~prcynn- 

Utiefi, T.e. TepMOC&@OHOB, B KOTOpbIX ABHXCyUlefi CHJIOii IlBJIlCTCSl pa3IiOCTb MeXCAy IIJIOTHOCTIlMB 

XGiAKOii li IIapOBOfi @a% BIIepBbIe C~OpMynHpOBaHbI OAHOMepHbIe Oll~AenKIOWie ,‘paBHeHHff A.IIK 

TaKBX KOHTYpOB IlepeMeHHOrO Ce’ieHHR. KpoMe TOrO IlpHHHMaeTCSi, YTO CBOkTBa llapa B AB,‘X@a3HOii 

30He nAHeirH0 H3MeHIIIOTCH OT nyT&l TeYeHBII. 3Ta MOAenb 3aT’ZM IIpHMeH,leTCK K KBaApaTHblM H TOpOH- 

Aa.“bHbIM KOHTypaM IIOCTORHHOrO CeqeHHK, pa6oveii XGiAKOCTbl B KOTOpbIX RBAReTCIl BOAOIIapOBaK 

CMeCb. &I,, KOHT,‘Pa 3aAaHHblX pa3MepOB B @OpMbl BnWIlHHe OTHOCUTenbHOrO IIOnOlKeHH11 MemA,’ HCna- 

p”TeneM B KOHAeHCaTOpOM MOxeT 6bITb OAeHeHO ‘lepe3 pa3HOCTb mOBHek BOAbI B HBX. Pe3,‘nbTaTbl 

nOKa3bIBaIOT, ST0 MaCCOBbIti PaCXOA B KOHT,‘p H BO3BpWeHHOe TellnO BO3paCTaEOT C ,‘BenH’IeHHeM 

pa3HOCTH B ,‘pOBHnX BOA&d np&4 (PHKCHpOBaHHOfi AJlHHe AB)‘XI$a3HOfi 30Hbl B pe3ynbTaTe POCTa IIOAMM- 
HOti CHJIbI. B TO CaMOe BfleMn OHli YMeHblUaEOTCR C )‘BenWIeHHeM AJlLiHbl AB)‘X+a3HOSi 30Hbl lIpH @KC& 

POBaHHOii pa3HOCTH YpOBHek BOAbI B pe3,‘nbTaTe pOCTa CBnbI TPCHHSI B AB,‘X+,HOM IIOTOKC. npll 
3aAaHHbIX AHaMeTpe BnB AJlBHe KOHTYpa MaCCOBbIfi paCXOA A BO3BpaIUeHHan TennOTa C yMeHbLUeHEieM 

nnO,AaAH IIOnepeYHOrO Ce9eHlDl UOTOKa IIpH @,KCHpOBaHHbIX pa3HOCTtl YpOBHefi BOAbI a AJlHHe AB,‘X- 

+a3HOii 30HbI ~epBOHa’WlbH0 YMeHblUaloTCR B3-3a J’MeHblIIeHHSl CBn HHepUHB II0 KOHTDY. Ann BOCCTa- 

HOBneHUR OTpa60TaHHOrO TellJla XKenaTenbHO WnOnb30BaTb XCHAKOCTb C 6onbrueii CKpbITOii TelLIlOTOfi 

Hcnapemin, nocKonbKy B iseii BbInenffemn 6onbme Tenna npe 3anamoM Macconohi pacxone. 


