Int. J. Heat Mass Transfer.
Printed in Great Britain

Vol. 31, No. 5, pp. 931-940, 1988

Steady-state analysis of two-phase natural
circulation loop

K. S. CHENfY and Y. R. CHANG

Department of Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 800,
Republic of China

(Received 10 July 1987 and in final form 14 September 1987)

Abstract—This paper is concerned with the steady-state behaviour of two-phase natural circulation loops,
i.e. thermosyphon loops, in which the density difference of a fluid between its liquid and vapour phases is
the driving force. The one-dimensional governing equations are first formulated for a variable-area, two-
phase loop based on the homogeneous model. In addition, the quality of the vapour in the two-phase zone
is assumed to be a linearly varying function of the flow distance. The model is then applied to constant-
area square and toroidal loops with water—steam as the working fluid. For a given size and shape of the
loop, the effect of relative position between the evaporator and condenser can be evaluated in terms of the
water-level difference between them. Results show that loop mass flow rate and recovered heat increase
with increasing water-level difference under a fixed two-phase zone length due to the increase of the buoyant
force, while they decrease with increasing two-phase zone length under a fixed water-level difference due
to the increase of the two-phase frictional force. For a given loop diameter or loop length, the mass flow
rate and the recovered heat decrease with decreasing flow cross-sectional area under fixed water-level
difference and two-phase zone length primarily due to the decrease of inertial force around the loop. For
the purpose of waste heat recovery, a fluid with larger latent heat of evaporation is desirable since it is able
to recover more heat for a given mass flow rate.
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1. INTRODUCTION

THIS PAPER is concerned with the steady-state behav-
iour of a two-phase natural circulation loop, i.e. ther-
mosyphon loop, in which the density difference of a
fluid between its liquid and vapour phases is the driv-
ing force. There are a number of engineering appli-
cations for a two-phase natural circulation loop.
Examples are thermosyphon reboilers [1-3], emerg-
ency cooling of nuclear reactor cores during an acci-
dent [4, 5] and reflux boiling in a light water reactor
core [6]. Of equal importance in engineering appli-
cations is the single phase natural circulation loops,
such as the cooling loop in a pressurized water reactor
core, solar water heaters, and cooling of turbine
blades and electronic components ; see refs. [7-9].
Demands on energy conservation also put it into
use for waste heat recovery. A recently com-
mercialized unit for such a purpose is a two-phase
rectangular loop shown in Fig. 1; see ref. [10]. There,
a high-temperature flue gas is forced to pass through
the evaporator section located at one vertical branch,
while the preheated air is forced to pass through the
condenser section located on another vertical branch
of the loop, within which water—steam is circulating.
For proper circulation in such a system, the evap-
orator section should be placed below the condenser.
The vertical distance between the evaporator and con-
denser sections, their lengths and flow cross-sectional
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area are the main parameters that affect the loop
performance.

Ramos et al. [11] carried out a one-dimensional
steady-state analysis for two-phase loops and dis-
cussed the effect of water-level difference, i.e. the ver-
tical distance between evaporator and condenser, on
the loop mass flow rate. The analysis, however, is
based on the ‘sharp-interface’ approximation in which
two-phase zone lengths in the evaporator and con-
denser sections are neglected. In so doing, effects of
two-phase zone lengths and more insight phenomena
affecting the loop performance cannot be examined.

It is the purpose of this paper to provide a detailed
steady-state, one-dimensional, analysis of natural cir-
culation loops. The governing equations are first for-
mulated for a variable-area, two-phase loop based on
the homogeneous model. In addition, the quality of
the vapour in the two-phase zone is assumed to be a
linearly varying function of the flow distance. The
model is then applied to constant-area square and
toroidal loops with water—steam as the working fluid.
Effects of water-level difference, two-phase zone
lengths, and flow cross-sectional area on the loop
mass flow rate and recovered heat are examined and
discussed.

2. MATHEMATICAL FORMULATION FOR
VARIABLE-AREA LOOP

The closed loop has an arbitrary shape with a pre-
scribed cross-sectional area A(s), where s is the co-
ordinate measured from the origin in the counter-
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NOMENCLATURE

A flow cross-sectional area z vertical height relative to a datum plane
B proportional factor for the frictional (Fig. ).

force in a single phase zone
D diameter of flow cross-sectional area Greek symbols
Jwe  two-phase friction coefficient A difference

gravitational acceleration ] angle of flow direction from the

latent heat of vaporization

total length of the loop

length of two-phase zone when b, =7, = {
length of cooling (condenser) section
length of heating (evaporator) section
mass flow rate

perimeter of flow cross-section

local pressure

total heat input {or output)

heat output per unit length

X E O mS SRS Y FSSNSS
L)

horizontal for a square loop (Fig. 3);
or angle measured from the lowest point
in a toroidal loop {Fig. 4)

u dynamic viscosity
v specific volume
Vg difference in specific volume between

saturated vapour and its liquid
P density
Ty frictional force on the wall.

heat input per unit length Subscripts
radius of toroidal loop (Fig. 4) c cooling section in the loop
coordinate or flow distance g vapour or gas
mean velocity h heating section in the loop
quality of vapour in two-phase zone 1 liguid.
Candensation
Section
i = dEE =
Cold Fluid
Evaporation {(4ir BFG)
Section
i
o = |
Hot Fiuid -
{Exhaust Gas)

FiG. 1. Schematic of a two-phase natural circulation loop for waste heat recovery.

clockwise direction (Fig. 2). The section 0 < s < d, is
adiabatic and contains saturated liquid. The loop is
heated continuously by a constant heat flux 4, in the
evaporator region d, < s < d,. Section d, < s < d;is
also adiabatic and contains saturated vapor. To com-
plete the cycle, condenser section d; < s < L is cooled
by a constant heat flux ¢, where L is the loop length.
Assumptions made in the analysis are:

(1) flow velocity and pressure are steady-state, and
one-dimensional functions of the flow distance;

(2) fluid in the entire loop is in the saturated con-
dition;

(3) the Poiseuille flow profile is used to evaluate the
friction factor in single phase regions;

(4) the homogeneous model is employed for the
two-phase zones;

(5) the quality of the vapour in the two-phase zone
varies linearly from one section boundary to the
other; and

(6) the friction coefficient in the two-phase zone is
constant.

Besides, superheat, subcooling and possible
entrainment in the two-phase zones are not con-
sidered.

Note that vapour quality usually increases (or
decreases) monotonically from the inlet section of the
evaporator (or condenser) to the exit section. The
assumption of a linear distribution of vapour quality
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F1G. 2. Schematic and coordinates of a variable-area two-phase natural circulation loop.

in the two-phase segments is therefore frequently
employed in the two-phase modelling [13]. It is also
noted in ref. [13] that the value of fp for low-pressure
flashing steam-water flow is in the range of 0.0029-
0.0033, and is about 0.005 for a high-pressure boiler.
In either case, frp is nearly constant. In this study,
a value of frp = 0.0031 is chosen for the analytical
development.

Since the homogeneous model is employed in the
two-phase zone, the governing equations in the two-
phase zone bear the same forms as those in the single
phase region [12, 13]. So the one-dimensional, steady-
state equations governing the loop flow can be written
as

m = pud M
dp ‘L'WP md .

a:—T—ZI—pgslne (2)
Q = thh = qclc = mhfg' (3)

Equations (1)—(3) are the continuity, momentum and
energy equations, respectively. In equation (2), the
pressure drop is due to the viscous, inertia and gravi-
tational losses. In the above equations p and rt,, are
the mean density and wall friction determined by

pr, in the saturated liquid region

p = 4 pg inthesaturated vapour region
v=! = [v+xv,] ', in the two-phase zone
(4a-—<)
By, in the liquid region
= B,u,, in the vapour region (5a-¢)

ulu| .
fre E_% ,in the two-phase region

where B is a constant; x and fi, are the quality of
vapour and the friction coefficient in the two-phase
zone, respectively. For a Poiseuille flow in the single
phase region, one can find [14]

AT 8np
Bl = T, Bg = P £ (6a’b)
where P is the perimeter of the cross-section.
The loop integral of equation (2) requires
L dp
L Eds =0. @)

Substituting equations (4)—(6) into equation (2) and
carrying out the loop integral yields

a i’ +amm|+bm+c =0 ®)
where
_ [ty o
= 0 AdS pA § ( a)
d. L
_ : fre Jre
a=2n , pPAzds+2n ] pPAZdS (9b)
d d
' BP s B,P
b—J; pAzd i pAzds (9c)
L
C=J pgsinfds (9d)
0

In equation (9d), 8 is the angle of flow measured from

the horizontal, and the following relation holds:
dz = sinfds (10)

where z is the vertical height from the datum plane
(Fig. 2).
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F1G. 3. Physical model and coordinates for a constant-area square loop.

It can be seen from equation (9a) that ‘a,’ represents
the variation of cross-sectional area; ‘a’ in equation
(9b) represents two-phase friction forces in the heating
and cooling sections; ‘b’ in equation (9¢) represents
the single phase friction forces in the saturated liquid
and vapour zones; and ‘¢’ in equation (9d) is simply
the net driving force, or net buoyant force, around
the loop due to the density difference between the
liquid and vapour phases.

If the loop is of variable area such that ‘a,” in
equation (8) is not equal to zero, multiple solutions
are obtained. However, for a loop of constant area as
considered in the following sections, @, = 0 and there
is only one solution given by

= an

provided that

b*—4dac = 0. (12)

Note that in the present study, the evaporator is
located on the right leg of the loop, so only the positive
value of #t needs to be considered. It can be shown
later that the value of ‘¢’ is related to the liquid-level
difference between the evaporator and condenser sec-
tions. If the evaporator is placed below the condenser
as usually done in the system of waste heat recovery,
‘¢’ is always negative. Because values of ‘@’ and ‘5’
shown in equations (9b) and (9¢) are always positive,
so equation (12) can always be satisfied.

It is clear from equations (9a) to (9d) that the
functional relation A(s), p(s), fre, By and B, must be
known in order to evaluate a, b and c. That is, the
loop shape, dimensions and fluid properties must be
known in advance. In what follows, analysis will be
focused on constant-area, square and toroidal loops
as shown in Figs. 3 and 4, respectively.

3. CONSTANT-AREA SQUARE LOOP

The physical model and coordinate system for a
square loop is shown in Fig. 3. The central line of the

lower horizontal branch is taken to be the datum
plane. From equation (4c), p(s) is prescribed if x(s),
the vapour quality as a function of flow distance, is
known. In this study, a linearly varying function is
assumed for x(s) according to

0<5~{d|: x=0
di<s<dy: x=(—d)h
(13a-d)
dy<s<dy: x=1
dy<s<L: x=(L-s)\l.

That is vapour quality is linearly increasing in the
evaporator section, and is linearly decreasing in the
condenser section. Substituting equations (6a), (6b),
(13a) and (13b) into equations (9a)—(9d) and using
relation (10) gives

2nf ¥ v
a= —ijz?“ {Vrlh‘i' %Iﬁ""r’ﬁ‘ T_;:g“l'c] (14)
B Py B P
b= —i;jidﬁr i (da—dyv, (15)
l } —
¢ = —pngzl—%fEIn [l-i— %(iz—lh—zﬁ]
4

A —
+pg Azt Poin [1 + 35(51_2—")] (16)
vfg vy lc
In the above
(17a,b)

(18a,b)

L=z2y—zp hy=2zy~24

Az =zy—2,, Azy=2z3~2,

where [, and [, are the heating (evaporator) and
cooling (condenser) lengths, respectively; Az the
liquid-level difference, and Az, the vapour-level
difference. Note that in arriving at equation {14) we
have used the assumption that frp is nearly constant
in the two-phase zone, and frp = 0.0031 is chosen in
the numerical calculations.

Because liquid density is usually much larger than
vapour density (p; = 1500p, for water as an example},



Steady-state analysis of two-phase natural circulation loop 935

Liquid

F1G. 4. Physical model and coordinates for a constant-area toroidal loop.

the value of ‘¢’ shown in equation (16) is always nega-
tive if the evaporator is placed below the condenser
(Az, > 0), unless the condenser length /, is imprac-
tically extremely long. Therefore, the net driving force
¢’ is dominated by the liquid-level difference. If the
evaporator and condenser are equal in length /, then
equation (16) can be simplified as

c= —pgAz,. 19)

That is, the net driving force ‘¢’ is mainly contributed
by the liquid-level difference Az,

4. CONSTANT-AREA TOROIDAL LOOP

The physical model for a toroidal loop and its coor-
dinate system are shown in Fig. 4. For convenience,
the datum plane is taken to be the horizontal line
passing through the lowest point of the loop. The
following relation holds for a toroidal loop :

dz = Rsin0d@ (20)

where —n<0<n and 6 is measured counter-
clockwise from the lowest point in the loop (Fig. 4).

As in a square loop, the quality of vapour in the
loop is assumed to be a linearly varying function of
the flow distance according to

O<s<d,:x=0
di<s<d,: x=(0-60)/0,-86)
dy<s<dy: x=1
dy<s<L: x=02n+0,—0)/2n+06,—0,).
(21a—d)

Substituting equations (6a), (6b), (21a) and (21b)
into equations (9a)—(9d) and using relation (20) gives

2Rfxy

“=DpaA7

[vf(ez 6,)+ 5 (0:=0)

+vf(21t+90—03)+%(2n+00—93):l 22)

RvB
b="BP o _ay+ BB g 0 @3
%  Rsin§df
c=g —pfAzﬁ-J;JI ——_——_vfg((?—@,) +p. Az,
6,-6))
2+, Rsin6dé
. (24
+L3 T Cn0,-6) (24)
" 2r+0,-105)

In the above

I,= RQn+0,—03), I, = R(B,—0,) (25a,b)

Az, = R(cosf,—cosb,), Az, = R(cos8,—cosb;).
(26a,b)
Similarly for a square loop, the value of ‘¢’ is always

negative in a practical system, in which the evaporator
is placed below the condenser. Note that even if
I, = 1. =1, the second and the fourth terms on the
right-hand side of equation (24) cannot be cancelled
out exactly due to the integral of the sine function.
However, the sum of these two terms is very small as
compared with the first term. Consequently equation
(24) can still be simplified as

¢ = —gprhz @7

ifly=1 =1
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Table 1. Dimensions of square (I) and toroidal (II) loops and
properties of saturated water at 1 atm

P 18.85cm
1 A 28.26 cm?
L 4m
R —80°
11 R 0.5m
D 4.0cm
e 283 x107*Nsm™?
2 1.206x 10~ Nsm~?
e 93531 kgm™*
Vi 16719 m’ kg™’

Again, the liquid-level difference is the main driving
force.

5. RESULTS AND DISCUSSIONS

The above analyses for constant-area square and
toroidal loops will be applied to some particular loop
dimensions with water-steam as the working fluid.
The loop dimensions and fluid properties at | atm
are listed in Table 1. In all cases, evaporator and
condenser are equal in length ; thatis f, = [, = I

Figure 5 presents the functional relations of m vs
Az for a square loop with / as a parameter. The loop
length is 4 m and flow cross-sectional area is 28.26
cm?. Figure 5 shows that » increases with increasing
Az, for a fixed I 1t can be seen from equation (19)
that a larger Az provides a larger buoyant force and,
therefore, results in a larger mass flow rate, For a fixed
Az, increasing two-phase zone length results in the
increase of the two-phase zone frictional force, that
is, ‘@’ in equation (14) increases; but the net buoyant
force ‘¢’ in equation (16) remains the same. Also, it
will be seen later that the value of ‘b’ representing
frictional forces in single phase regions changes little.
Consequently, the mass flow rate decreases with
increasing two-phase zone length under a fixed water-

K. S. Cuen and Y. R. CHANG

Figure 6 presents the functional relation of m vs
A8, (= 8,—8,) as the parameter for a toroidal loop
at R=50 cm, A = 12.57 cm?, P= 1527 cm, and
8, = —80°. Note that since Az, and A8, are related to
0, and [, according to equations (25b) and (26a),
respectively, so Fig. 6 in fact shows the dependence of
ron — Az, with / as the parameter. Similarly as in a
square loop, it shows that the mass flow rate increases
with decreasing 8, (or increasing Az) for a fixed A,
{or two-phase zone length); and it decreases with
increasing two-phase zone length under a fixed water-
level difference. Because mass flow rate is proportional
to the heat input or output according to equation (3),
the water-level difference and two-phase zone length,
therefore, affect the recovered heat in the same
manner.

The individual terms in equation (2) are, respec-
tively, pressure, friction, inertia and buoyancy forces.
Once the mass flow rate has been determined, their
functional dependencies on the coordinate s can be
obtained by integrating them along the flow distance.
For example, the pressure p(s) can be determined by

P [hdu, [
p(S)=1J(0)—J;Tds—ﬁza(kwﬁgsm@dﬁ
(28)

where p(0) at s = 0 has to be prescribed. Consider the
case for a toroidal loop with the following dimen-
sions:

61 = 500, 00 = —80°
R=50cm, A=1257cm?
8,—8, =2n+0,—0; = 30°

and the corresponding profiles of pressure, buoyancy,
inertia and friction forces as functions of coordinate
s are shown in Fig. 8. From Fig. 6 it reads

level difference. r = 02213 kgs™ .
30F
25 |
. 20 - =
ikg/s) ™ [ £ -olom - —
5 | _— 7 amsm
T r -~ _ — — Togzom
| — p— —
10 & M
r //
P -
1 WS ORS00 W D SEVURT U WS U OO TN TUR R AR SHAS U0 T WO JUUOY T VU S S B M RS
0'50.3 06 o9
AZQ

FiG. 5. Mass flow rate as functions of water-level difference and two-phase zone length for a square loop
with dimensions given in Table 1.
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F1G. 6. Mass flow rate as functions of water-level difference and two-phase zone length for a toroidal loop
with dimensions given in Table 1.

All forces have been assigned to zero at the origin.
Interpretation of the profiles is aided by a diagram
of the normalized gravity acceleration function, g/g,
given in the lower part of the figure as a function
of 5. The positive value of g/g corresponds to the
downcoming section of the loop, while the negative
value corresponds to the rising section. Coordinates
for each boundary of the flow regime, such as s = d,,
d,, . .., are also indicated in the diagram. Therefore,
the single phase liquid region lies in 0 < s < 4, ; the
evaporator section lies in d, < s < d,, and so on.

It can be seen from Fig. 8 that pressure and buoy-
ancy forces are dominant in the liquid region, where
friction and inertia forces are negligible. The inertia
force starts increasing once the flow enters the evap-
orator section and remains nearly constant in the

single phase vapour zones, and then decreases in the
condenser section. Pressure and inertia forces are
dominant in the evaporator and single phase vapour
zones. The frictional force in the vapour and two-
phase zones is small, but it is of comparable order to
the buoyant force. The momentum balance requires
that the summation of the individual forces vanishes
at each location of the loop. Also, the loop or cycle
integrals for the pressure and inertial forces go to zero,
but are non-zero and opposite in sign and equal in
magnitude for the buoyant and frictional forces. It is
this net buoyant force that drives fluid circulating
around the loop and balances the frictional force.

If flow cross-sectional area is decreased but other
loop dimensions are kept the same, the individual
force contributions are shown in Fig. 9 for a toroidal

60
- Ty T T
Ptkpe) | D=0.04Mm / \\
- / \
- , \
o _/:‘_E'-‘sl ___________ —
- 4 4 ]
C \ /
B \ /
C \ /
C N
-60 T RN TR SN RN T R TR NS TR WY A
o° 80° 160° 240° 320° 360°
? r\ YD)
9 4 4 9
E ’ v | r

7-

F1G. 7. Mass flow rate as functions of water-level difference and flow cross-sectional area for a toroidal
loop with dimensions given in Table 1 and A8 = 30°.

HMT 31:5-C
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FiG. 8. Distributions of individual forces around

a toroidal loop with 4 = 12.57 cm?: 1, pressure;

2, friction; 3, inertia ; 4, buoyancy force.

loop with 4 =3.14 cm?. Comparison with Figs. 8
and 9 shows that pressure and inertia forces decrease
significantly when the pipe diameter reduces from 4
to 2 c¢cm, but buoyant and frictional forces change
little. Since mass flow rate is proportional to the inertia
force, it decreases with decreasing flow cross-sectional
area accordingly. A similar effect also holds for the
recovered heat.

6. CONCLUSIONS

A one-dimensional steady-state analysis of a vari-
able-area, two-phase natural convection loop based
on a homogeneous two-phase model is presented. The

quality of vapour in the two-phase zone is assumed
to be a linearly varying function of the flow distance.
Effects of two-phase zone lengths, liquid-level differ-
ence and flow cross-sectional area on the mass flow
rate and recovered heat are examined for constant-
area, square, and toroidal loops with water—steam as
the working fluid. The conclusions given below can
be drawn from this study.

(1) Mass flow rate or recovered heat increases with
increasing water-level difference under a fixed two-
phase zone length due to the increasing net driving
force.

(2) Mass flow rate or recovered heat decreases with

0.3
- |
T —
N —
R ~Q=0.

02 [ Rz0.0%M
- -
[ ~
[ \\

mikgls) -
g ; ~

L — ~

o1 f- —— _0Q03m N
[ —
- ——
L —
[— ——— — __ ooz2m b
“ A ( 00iM .1

o} T T T T T T T I~ b -
30° 40° 50° 6Cc” 70° 759

6,

F1G. 9. Distributions of individual forces around a

toroidal loop with 4 = 3.14 cm?; see Fig. 8 for the

symbols.
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increasing two-phase zone length under a fixed water-
level difference primarily due to the increase of two-
phase frictional force.
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ANALYSE D’UNE BOUCLE DE CIRCULATION PERMANENTE NATURELLE
DIPHASIQUE

Résumé—On considére des boucles de circulation permanente naturelle, par exemple des thermosiphons,
pour lesquelles la différence de densité du fluide entre ses phases liquide et vapeur est la cause motrice. Les
équations unidirectionnelles sont d’abord formulées pour un circuit d section variable, diphasique, a partir
du modéle homogéne. De plus, la qualité de la vapeur dans la zone diphasique est supposée étre une
fonction linéaire de la distance longitudinale. Le modéle est ensuite appliqué 4 des boucles 4 section
constante, carrée et toroidale, avec I’eau comme fluide actif. Pour une taille donnée, l’effet de la position
relative entre I’évaporateur et le condenseur peut étre évalué en fonction de la différence de niveau d’eau
liquide entre eux. Les résultats montrent que le débit-masse et la chaleur récupérée augmentent quand cette
différence de niveau croit, pour une longueur de zone diphasique fixée, 4 cause de I’accroissement des forces
de flottement, tandis qu’ils diminuent quant la longueur de zone diphasique augmente, pour une différence
de niveau d’eau fixée, a cause de Paccroissement de la force de frottement en diphasique. Dans un projet
de récupération de chaleur perdue, un fluide a grande chaleur latente de changement d’état est souhaitable
puisqu’il est capable d’accepter plus de chaleur pour un débit-masse donné.

THEORETISCHE UNTERSUCHUNG DES STATIONAREN VERHALTENS EINES
ZWEIPHASIGEN NATURUMLAUFSYSTEMS

Zusammenfassung—Diese Arbeit befaBt sich mit dem stationdren Verhalten von Zweiphasen-Naturumlauf-
Systemen, z. B. Thermosyphons, in welchen der Dichteunterschied zwischen Fliissigkeit und Dampfphase
als Antriebskraft dient. Es werden die eindimensionalen Stromungsgleichungen, beruhend auf dem homo-
genen Modell, fiir einen Zweiphasen-Kreislauf mit verinderbarem Querschnitt formuliert. Ergidnzend wird
angenommen, dafl der Massendampfgehalt im Zweiphasengebiet linear vom Stromungsweg abhingt. Das
Modell wird dann auf einen quadratischen Kreislauf und einen Torus mit konstantem Querschnitt fiir das
Arbeitsmitte] Wasser-Dampf angewandt. Bei gegebener GroBe und Form des Kreislaufs kann der EinfluB
der relativen Lage von Verdampfer und Kondensator mit Hilfe der Wasserspiegeldifferenz zwischen
ihnen ausgedriickt werden. Die Ergebnisse zeigen, dal Massenstrom und transportierter Warmestrom bei
wachsender Wasserspiegeldifferenz und unter konstant gehaltener Linge des Zweiphasengebiets infolge
der zunehmenden Auftriebskrifte groBer werden ; sie werden dagegen bei zunehmender Linge des Zwet-
phasengebiets und unter konstant gehaltener Wasserspiegeldifferenz infolge des zunehmenden Zweiphasen-
Stromungswiderstandes kleiner. Bei gegebenem Kreislaufdurchmesser oder Kreislauflinge verringern
sich Massenstrom und Wirmestrom bei verringertem Strémungsquerschnitt unter konstant gehaltener
Wasserspiegeldifferenz und Linge des Zweiphasengebiets.
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AHAJIN3 CTALIMOHAPHOI'O PEXXVIMA JIBYX®A3HOI'O KOHTYPA C ECTECTBEHHOM
LMPKVJIALIMEN

AsnoTamss—PaccMaTpHBaeTCs CTalMOHAPHBIA PEXHM ABYX(}a3HbIX KOHTYPOB C €CTECTBEHHON LKPKYIA-
1Mei, T.e. TePMOCH(GOHOB, B KOTOPLIX IBIXYILUECH CHJION SBJIAETCA DPAa3HOCTD MEXIY ILUIOTHOCTAMM
KHOKO# M mapoBoi da3. Bnepsrie cHoOpMyIHpOBaHbI OZHOMEPHEIE ONpENENAIOUIMEe YPaBHEHHS UIA
TaKHX KOHTYpOB NepeMeHHoro ceuenns. KpoMe Toro mpMHHMaeTcs, 4To CBOHCTBA Napa B ABYX¢a3Hoi
30HE JIHHEHHO W3MEHSIOTCA OT NYTH TEYCHHs. ITa MOJENL 3aTeM NPAMEHSETCH K KBAAPATHBIM H TOPOH-
JaJbHBIM KOHTYpaM MOCTOSHHOTO Ce4eHHH, pabodeil KMIAKOCTHI B KOTOPBIX ABIAETCA BOIOMAapOBas
cMeck. 1A KOHTYpa 3aJaHHBIX PasMepoB H GOPMBI BINAHHE OTHOCHTEIBHOTO MONOXKEHHA MEXIY MCna-
pHUTENEM M KOHAEHCAaTOPOM MOXET ObITh OIIEHEHO Yepe3 pa3sHOCTb YPOBHEH Bonbl B HHMX. PesymbTaTht
MOKAa3bIBAKOT, YTO MACCOBBIH PacXol B KOHTYpPe H BO3BPAIICHHOE TEIUIO BO3PACTAIOT C yBEIHYECHHEM
Pa3HOCTH B YPOBHSAX BOJBI NPH (GHKCAPOBaHHOM JUIMHE ABYX(a3HO# 30HBI B PE3YJIbTATE POCTA NOTbEM-
HO# cunbl. B TO caMoe BpeMst OHH YMEHBILAIOTCA C YBETHYEHHEM JUTHHBLI BYX($a3HON 30HBI NpH duKCH-
pPOBaHHOW Pa3HOCTH YPOBHEH BOIBI B pe3yibTaTeé pOCTa CHIBI TpeHHA B IByxdasnoM moToke. [Ipu
3alaHHBIX JHAMeETpPe HWIH JUTHHE KOHTYpa MacCCOBBLI PacXo[ M BO3BpAllEHHAA TEIUIOTA C YMEHBUICHHEM
IIOWAAN TONEPEYHOro CeYeHMs MOTOKa NPH (PHKCHPOBAHHBIX PA3HOCTH YPOBHEH BOMABI M JUIMHE ABYX-
$a3HOU 30HBI MEPBOHAYAIIBHO YMEHBIIIAKOTCS M3-32 YMEHBIICHAS CHJI HHEPIHH 10 KOHTYpY. [lns Boccra-
HOBJIEHHS OTPabOTaHHOTO TEIUIAa XKeJNATENbHO HCIOJBL30BaTh KUAKOCTh ¢ Hosblued CKPLITOH TemwnoTOR
HCMapeHns, NTOCKOJIbKY B Hell BeiesseTca 6oibIie Tena npH 3aJAaHHOM MacCOBOM Pacxo/e.



